51 research outputs found

    Early redox activities modulate Xenopus tail regeneration.

    Get PDF
    Redox state sustained by reactive oxygen species (ROS) is crucial for regeneration; however, the interplay between oxygen (O2), ROS and hypoxia-inducible factors (HIF) remains elusive. Here we observe, using an optic-based probe (optrode), an elevated and steady O2 influx immediately upon amputation. The spatiotemporal O2 influx profile correlates with the regeneration of Xenopus laevis tadpole tails. Inhibition of ROS production but not ROS scavenging decreases O2 influx. Inhibition of HIF-1α impairs regeneration and stabilization of HIF-1α induces regeneration in the refractory period. In the regeneration bud, hypoxia correlates with O2 influx, ROS production, and HIF-1α stabilization that modulate regeneration. Further analyses reveal that heat shock protein 90 is a putative downstream target of HIF-1α while electric current reversal is a de facto downstream target of HIF-1α. Collectively, the results show a mechanism for regeneration via the orchestration of O2 influx, ROS production, and HIF-1α stabilization

    Ventx factors function as Nanog-like guardians of developmental potential in Xenopus

    Get PDF
    International audienceVertebrate development requires progressive commitment of embryonic cells into specific lineages through a continuum of signals that play off differentiation versus multipotency. In mammals, Nanog is a key transcription factor that maintains cellular pluripotency by controlling competence to respond to differentiation cues. Nanog orthologs are known in most vertebrates examined to date, but absent from the Anuran amphibian Xenopus. Interestingly, in silico analyses and literature scanning reveal that basal vertebrate ventral homeobox (ventxs) and mammalian Nanog factors share extensive structural, evolutionary and functional properties. Here, we reassess the role of ventx activity in Xenopus laevis embryos and demonstrate that they play an unanticipated role as guardians of high developmental potential during early development. Joint over-expression of Xenopus ventx1.2 and ventx2.1-b (ventx1/2) counteracts lineage commitment towards both dorsal and ventral fates and prevents msx1-induced ventralization. Furthermore, ventx1/2 inactivation leads to down-regulation of the multipotency marker oct91 and to premature differentiation of blastula cells. Finally, supporting the key role of ventx1/2 in the control of developmental potential during development, mouse Nanog (mNanog) expression specifically rescues embryonic axis formation in ventx1/2 deficient embryos. We conclude that during Xenopus development ventx1/2 activity, reminiscent of that of Nanog in mammalian embryos, controls the switch of early embryonic cells from uncommitted to committed states

    Infection-generated electric field in gut epithelium drives bidirectional migration of macrophages.

    Get PDF
    Many bacterial pathogens hijack macrophages to egress from the port of entry to the lymphatic drainage and/or bloodstream, causing dissemination of life-threatening infections. However, the underlying mechanisms are not well understood. Here, we report that Salmonella infection generates directional electric fields (EFs) in the follicle-associated epithelium of mouse cecum. In vitro application of an EF, mimicking the infection-generated electric field (IGEF), induces directional migration of primary mouse macrophages to the anode, which is reversed to the cathode upon Salmonella infection. This infection-dependent directional switch is independent of the Salmonella pathogenicity island 1 (SPI-1) type III secretion system. The switch is accompanied by a reduction of sialic acids on glycosylated surface components during phagocytosis of bacteria, which is absent in macrophages challenged by microspheres. Moreover, enzymatic cleavage of terminally exposed sialic acids reduces macrophage surface negativity and severely impairs directional migration of macrophages in response to an EF. Based on these findings, we propose that macrophages are attracted to the site of infection by a combination of chemotaxis and galvanotaxis; after phagocytosis of bacteria, surface electrical properties of the macrophage change, and galvanotaxis directs the cells away from the site of infection

    2D Visualization of the Psoriasis Transcriptome Fails to Support the Existence of Dual-Secreting IL-17A/IL-22 Th17 T Cells

    Get PDF
    The present paradigm of psoriasis pathogenesis revolves around the IL-23/IL-17A axis. Dual-secreting Th17 T cells presumably are the predominant sources of the psoriasis phenotype-driving cytokines, IL-17A and IL-22. We thus conducted a meta-analysis of independently acquired RNA-seq psoriasis datasets to explore the relationship between the expression of IL17A and IL22. This analysis failed to support the existence of dual secreting IL-17A/IL-22 Th17 cells as a major source of these cytokines. However, variable relationships amongst the expression of psoriasis susceptibility genes and of IL17A, IL22, and IL23A were identified. Additionally, to shed light on gene expression relationships in psoriasis, we applied a machine learning nonlinear dimensionality reduction strategy (t-SNE) to display the entire psoriasis transcriptome as a 2-dimensonal image. This analysis revealed a variety of gene clusters, relevant to psoriasis pathophysiology but failed to support a relationship between IL17A and IL22. These results support existing theories on alternative sources of IL-17A and IL-22 in psoriasis such as a Th22 cells and non-T cell populations

    Biological functions and intergration of BMP, FGF, Nodal and Notch signals durinf differentiation and morphogenesis of the xenopus embryo

    No full text
    Mon travail de thèse a été principalement de comprendre comment les voies de signalisations contrôlent la différenciation et la morphogenèse de l'embryon de vertébré. Les communications entre cellules sont à la base du développement des métazoaires et de leurs évolutions et sont souvent impliquées dans les pathologies humaines. J'ai profité de la puissance des approches fonctionnelles chez le xenope pour essayer de comprendre comment les signaux BMP, FGF, Nodal et Notch sont intégrés dans le temps et l'espace afin de coordonnées différentes décisions cellulaires. Premièrement, nous avons montré que la voie Nodal est active avant la transition mid-blastuléene et permet l'induction du mesedoderme à travers l'auto régulation de l'expression de ces ligands Xnr5 et Xnr6 (Skirkanish et al. soumis à Development). Deuxièmement, j'ai montré que différent ligand de la voie Nodal contrôlent séquentiellement l'induction du mesendoderm et les mouvements de gastrulation (Luxardi et al., Development, 2010). Troisièmement, j'ai montré qu'un cinquième ligand de la voie Nodal, Xnr4, contrôle la régionalisation médio latérale de la plaque neurale ouverte et la neurogenèse. Quatrièmement, nous avons montré qu'une famille de microARN, nir449, contrôle la différenciation des cellules multi-ciliées à travers son action sur un ligand de la voie Notch, Delta-1 (Marcet et al. Nature Cell Biology, en révision). Enfin, j'ai découvert une nouvelle fonction des signaux BMP dans le control de la spécification des épithéliums muco cilié.My PhD work generally addressed how signaling pathways control differentiation and morphogenesis in the vertebrate embryo. intercellular communication is the basis of metazoan development and evolution and is often involved in human pathologies. I take advantage of the power of functional approaches in the Xenopus embryo, to try and understand how BMP, FGF, Nodal and Notch signals are intragrated in time ans space to coordinate vatious cellular decisions. First, we showed that Nodal signaling is activated before the mid blastula transition and allow mesendoderm induction through the auro regulation of the expression of its ligands Xnr5 and Xnr6 (Skirkanish et al., submitted to development). Second, I have demonstrated that in a gastrulation movements (Luxardi et al., Development, 2010). Third, I have demonstrated that a fifth Nodal ligand, Xnr4, control medio-lateral patterning of the open neural plate and neurogenesis. Froth, we showed that a microRNA family, mir449, controls differenciation of multiciliated cells through the regulation of the Notch ligand Delta-1 (Marcet et al. Nature Cell Biology, in revision). Last, I have discovered a novel function of the BMP pathway in the control of cell type specification within the epidermal mucocialiary epitheliu

    Biological functions and intergration of BMP, FGF, Nodal and Notch signals durinf differentiation and morphogenesis of the xenopus embryo

    No full text
    Mon travail de thèse a été principalement de comprendre comment les voies de signalisations contrôlent la différenciation et la morphogenèse de l'embryon de vertébré. Les communications entre cellules sont à la base du développement des métazoaires et de leurs évolutions et sont souvent impliquées dans les pathologies humaines. J'ai profité de la puissance des approches fonctionnelles chez le xenope pour essayer de comprendre comment les signaux BMP, FGF, Nodal et Notch sont intégrés dans le temps et l'espace afin de coordonnées différentes décisions cellulaires. Premièrement, nous avons montré que la voie Nodal est active avant la transition mid-blastuléene et permet l'induction du mesedoderme à travers l'auto régulation de l'expression de ces ligands Xnr5 et Xnr6 (Skirkanish et al. soumis à Development). Deuxièmement, j'ai montré que différent ligand de la voie Nodal contrôlent séquentiellement l'induction du mesendoderm et les mouvements de gastrulation (Luxardi et al., Development, 2010). Troisièmement, j'ai montré qu'un cinquième ligand de la voie Nodal, Xnr4, contrôle la régionalisation médio latérale de la plaque neurale ouverte et la neurogenèse. Quatrièmement, nous avons montré qu'une famille de microARN, nir449, contrôle la différenciation des cellules multi-ciliées à travers son action sur un ligand de la voie Notch, Delta-1 (Marcet et al. Nature Cell Biology, en révision). Enfin, j'ai découvert une nouvelle fonction des signaux BMP dans le control de la spécification des épithéliums muco cilié.My PhD work generally addressed how signaling pathways control differentiation and morphogenesis in the vertebrate embryo. intercellular communication is the basis of metazoan development and evolution and is often involved in human pathologies. I take advantage of the power of functional approaches in the Xenopus embryo, to try and understand how BMP, FGF, Nodal and Notch signals are intragrated in time ans space to coordinate vatious cellular decisions. First, we showed that Nodal signaling is activated before the mid blastula transition and allow mesendoderm induction through the auro regulation of the expression of its ligands Xnr5 and Xnr6 (Skirkanish et al., submitted to development). Second, I have demonstrated that in a gastrulation movements (Luxardi et al., Development, 2010). Third, I have demonstrated that a fifth Nodal ligand, Xnr4, control medio-lateral patterning of the open neural plate and neurogenesis. Froth, we showed that a microRNA family, mir449, controls differenciation of multiciliated cells through the regulation of the Notch ligand Delta-1 (Marcet et al. Nature Cell Biology, in revision). Last, I have discovered a novel function of the BMP pathway in the control of cell type specification within the epidermal mucocialiary epitheliumAIX-MARSEILLE2-Bib.electronique (130559901) / SudocSudocFranceF
    • …
    corecore